JUC - FutureTask.md
JUC 系列之 FutureTask
以下介绍了一种 FutureTask 的用法:
Callable<String> callable = new Callable<String>() {
@Override
public String call() throws Exception {
return "Response";
}
};
FutureTask<String> futureTask = new FutureTask<>(callable);
Thread th = new Thread(futureTask);
th.start();
String s = futureTask.get();
System.out.println(s);
来看看 FutureTask 的源码,先来类图:
可以看到它是包装了 Runnable 与 Future 对象 。
先来看构造方法:
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}
可以看到最终都需要一个 Callable 对象,如果传入 runnable 的话就会调用 Executors.callable
自动生成一个:
// Executors#callable()
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
而 RunnableAdapter 就是 将 Runnable 包装成 Callable 的包装类,其中 call 方法的返回值需要直接给定:
private static final class RunnableAdapter<T> implements Callable<T> {
private final Runnable task;
private final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
public String toString() {
return super.toString() + "[Wrapped task = " + task + "]";
}
}
回到构造方法,首先需要把 Callable 对象赋值,然后将 当前状态赋值为 NEW,
这里的 state 表示该任务当前状态,为了在各个线程中都有可见性,添加了 volatile ,源码中给出可能的状态如下:
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
注释中给出可能的状态转换链如下:
/**
* Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
这里 FutureTask 对象实现了 Runnable 接口,可以直接放到 Thread 里,而新线程启动的时候会执行 run 方法,因此这里先看 run 方法:
public void run() {
if (state != NEW ||
!RUNNER.compareAndSet(this, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
这里用 CAS 操作将 RUNNER 句柄设置为当前线程,保证运行安全。
然后是执行 callable 中的 call 方法,执行成功则调用 set(result) 方法分发结果,否则调用 setException(ex) 方法分发异常。最终如果任务被中断了,还需要调用 handlePossibleCancellationInterrupt(s)
先来看看 分发结果:
protected void set(V v) {
if (STATE.compareAndSet(this, NEW, COMPLETING)) {
outcome = v;
STATE.setRelease(this, NORMAL); // final state
finishCompletion();
}
}
首先使用 CAS 操作将当前状态从 NEW 更新到 COMPLETIONG,这步保证了结果只能进行一次分发,并且分发的时候当前状态需要为 NEW 才能继续 。
然后将 结果 赋值给 outcome,此时调用 get 方法可以获取该结果(除此之外 get 带有阻塞等其他操作,之后会分析)。然后将当前状态设置为 NORMAL,这里采用了 setRelease 除了保证内存可见性,也是保证了不会有之前的操作指令重排到之后,保证 除非之后有显式修改 STATE ,否则之后 STATE 都为 NORMAL,然后调用 finishCompletion 方法,该方法为唤醒等待队列中的线程,之后在分析。
来到 setException 方法:
protected void setException(Throwable t) {
if (STATE.compareAndSet(this, NEW, COMPLETING)) {
outcome = t;
STATE.setRelease(this, EXCEPTIONAL); // final state
finishCompletion();
}
}
与分发结果差不多,不过最终状态变为 EXCEPTIONAL ,并且 outcome 将赋值为异常。
private void handlePossibleCancellationInterrupt(int s) {
// It is possible for our interrupter to stall before getting a
// chance to interrupt us. Let's spin-wait patiently.
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield(); // wait out pending interrupt
// assert state == INTERRUPTED;
// We want to clear any interrupt we may have received from
// cancel(true). However, it is permissible to use interrupts
// as an independent mechanism for a task to communicate with
// its caller, and there is no way to clear only the
// cancellation interrupt.
//
// Thread.interrupted();
}
该方法可以看成是,当 state 为 INTERRUPTIONG 时,线程一直会忙等,这里调用 yield 为放弃当前 cpu,等待 CPU 重新分配资源 。
至此, run 方法分析完了,来看 get 方法:
/**
* @throws CancellationException {@inheritDoc}
*/
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
/**
* @throws CancellationException {@inheritDoc}
*/
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
可以看到,无论是有没有超时时间的 get,都是先调用 awaitDone 方法等待结果,而 awaitDone 方法第一个参数为是否有超时时间 。然后调用 report 方法获取结果。
来到这里:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
// The code below is very delicate, to achieve these goals:
// - call nanoTime exactly once for each call to park
// - if nanos <= 0L, return promptly without allocation or nanoTime
// - if nanos == Long.MIN_VALUE, don't underflow
// - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
// and we suffer a spurious wakeup, we will do no worse than
// to park-spin for a while
long startTime = 0L; // Special value 0L means not yet parked
WaitNode q = null;
boolean queued = false;
for (;;) {
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING)
// We may have already promised (via isDone) that we are done
// so never return empty-handed or throw InterruptedException
Thread.yield();
else if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
else if (q == null) {
if (timed && nanos <= 0L)
return s;
q = new WaitNode();
}
else if (!queued)
queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
else if (timed) {
final long parkNanos;
if (startTime == 0L) { // first time
startTime = System.nanoTime();
if (startTime == 0L)
startTime = 1L;
parkNanos = nanos;
} else {
long elapsed = System.nanoTime() - startTime;
if (elapsed >= nanos) {
removeWaiter(q);
return state;
}
parkNanos = nanos - elapsed;
}
// nanoTime may be slow; recheck before parking
if (state < COMPLETING)
LockSupport.parkNanos(this, parkNanos);
}
else
LockSupport.park(this);
}
}
代码有点长,不过主题是一个死循环和一堆 if,主要是维护了一个等待链队列,这个队列结点为 WaitNode
:
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
比较简单,就是 next 域与 当前线程。
回到 awaitDone
,主要是判断当前 status
如果当前 status > COMPLETING
即已经完成,包括中断状态,只要此时有 outcome 就行,此时如果当前线程加入了等待队列,则将结点的 thread 设置为 null,结点不用删除,之后会处理。
然后返回当前 status 。
否则,如果 status = completing
,则表示当前正好正在执行 set 方法第一行代码之后,这里直接调用 Thread.yield();
让出 CPU,等再次获取资源之后交给下一个循环处理。
否则,如果当前线程中断标志位为 true,则从等待队列中移除当前结点,然后抛出中断异常 。来到 。
否则,如果 q == null ,则还没创建当前等待节点,则直接实例化一个 WaitNode
,然后进入下次自旋,如果下次自旋依然未完成,则会加入等待队列中。这里顺便做了一次超时判断,如果超时则直接返回。
否则,如果 queue 为 false,则当前结点还没加入等待队列,则使用 CAS 操作将结点加入等待队列,注意看这里的 CAS 操作:
queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
这是使用 CAS 操作的头插法,返回是否更新成功 。
否则,如果设置了超时操作,则进行超时判断,这里逻辑还是比较简单,如果需要挂起则调用 LockSupport.parkNanos(this, parkNanos);
挂起。
否则,直接挂起别商量 。
来看看 removeWaiter:
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
pred.next = s;
if (pred.thread == null) // check for race
continue retry;
}
else if (!WAITERS.compareAndSet(this, q, s))
continue retry;
}
break;
}
}
}
先将结点的 thread 赋值为 null 然后遍历删除所有 thread 为 null 的结点。
最后来看看 report 方法:
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
}
判断状态抛异常或者返回结果。
最后来看看刚刚跳过的 finishComplete 方法:
/**
* Removes and signals all waiting threads, invokes done(), and
* nulls out callable.
*/
private void finishCompletion() {
// assert state > COMPLETING;
for (WaitNode q; (q = waiters) != null;) {
if (WAITERS.weakCompareAndSet(this, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
首先是将头结点取出并通过 CAS 操作将头节点设置为 null,保证只有一个线程可以来到循环中,然后遍历所有结点将其唤醒。
最后会调用一边 done 方法,该方法为一个空实现,由子类实现,主要是一个完成钩子 。